Multisymplectic Geometry Method for Maxwell's Equations and Multisymplectic Scheme *

نویسندگان

  • Hongling Su
  • Mengzhao Qin
چکیده

In this paper we discussed the self-adjointness of the Maxwell’s equations with variable coefficients ε and μ. Three different Lagrangian are attained. By the Legendre transformation, a multisymplectic Bridge’s (Hamilton) form is obtained. Based on the multisymplectic structure, the multisymplectic conservation law of the system is derived and a nine-point Preissman multisymplectic scheme which preserve the multisymplectic conservation law is given for the Maxwell’s equations in an inhomogeneous, isotropic and lossless medium. At last a numerical example is illustrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

De Donder-weyl Equations and Multisymplectic Geometry

Multisymplectic geometry is an adequate formalism to geometrically describe first order classical field theories. The De Donder-Weyl equations are treated in the framework of multisymplectic geometry, solutions are identified as integral mani-folds of Hamiltonean multivectorfields. In contrast to mechanics, solutions cannot be described by points in the multi-symplectic phase space. Foliations ...

متن کامل

Numerical simulation of interaction between Schrödinger field and Klein-Gordon field by multisymplectic method

We propose a multisymplectic scheme to solve the coupled Klein–Gordon–Schrödinger system. The scheme preserves the multisymplectic geometry structure exactly by satisfying the discrete multisymplectic conservation law, and can simulate the original waves well in a long time. This scheme also has discrete quasi-norm conservation law. Numerical experiments demonstrate the consistency between the ...

متن کامل

High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations

In this paper, we develop a new kind of multisymplectic integrator for the coupled nonlinear Schrödinger (CNLS) equations. The CNLS equations are cast into multisymplectic formulation. Then it is split into a linear multisymplectic formulation and a nonlinear Hamiltonian system. The space of the linear subproblem is approximated by a highorder compact (HOC) method which is new in multisymplecti...

متن کامل

Geometric Space-Time Integration of Ferromagnetic Materials

The Landau-Lifshitz equation (LLE) governing the flow of magnetic spin in a ferromagnetic material is a PDE with a noncanonical Hamiltonian structure. In this paper we derive a number of new formulations of the LLE as a partial differential equation on a multisymplectic structure. Using this form we show that the standard central spatial discretization of the LLE gives a semi-discrete multisymp...

متن کامل

Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs

Several recently developed multisymplectic schemes for Hamiltonian PDEs have been shown to preserve associated local conservation laws and constraints very well in long time numerical simulations. Backward error analysis for PDEs, or the method of modified equations, is a useful technique for studying the qualitative behavior of a discretization and provides insight into the preservation proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008